
International Journal of  Theoretical Physics, VoL 33, No. 10, 1994 

L o g i c s  and Q u a n t u m  Gravi ty  

Frank Antonsen t 

Received April 13, 1994 

We consider the logic needed for models of quantum gravity, taking as our 
starting point a simple pregeometric toy model based on graph theory. First a 
discussion of quantum logic seen in the light of canonical quantum gravity is 
given, then a simple toy model is proposed and the logical structure underlying 
it exposed. It is then shown that this logic is nonclassical and in fact contains 
quantum logics as special cases. We then go on to show how Yang-Mills theory 
and quantum mechanics fits in. A single mathematical structure is proposed 
capable of containing all these subjects in a natural and elegant way. Causality 
plays an important role. The mere presence of a causal relation almost in- 
evitably yields this kind of logic. 

1. I N T R O D U C T I O N  AND S E T U P  

It  has been known  for  several years that  quan tum theory can be 
formulated in a beautiful manner  using nonclassical logics (Gudder ,  1979; 
Varadarajan,  1985; Pitowsky, 1989). Now,  to me the greatest unsolved 
problem in quan tum  theory is the quant izat ion o f  gravity. It  has long been 
believed that  in order  to per form this quant izat ion we have to give up our  
usual not ions o f  space and time, and that  this breaking up of  concepts  
occurs at the Planck scale. Most  models  claim that  at  this scale space and 
time should become discrete, in other  words  the c o m i n u u m  o f  general 
relativity is replaced, at  the Planck scale, by a discrete structure. 

Canonical  quant izat ion o f  Einstein's theory o f  gravitat ion leads to the 
W h e e l e r - D e W i t t  equation,  which has the form of  a t ime-independent 
Schr6dinger equation,  but  with the metric tensor gij as parameter,  i.e.0 

= ( - A  + = 0 (1) 
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where A is some second-order differential operator 

1 1 6 2 
A = ~ G i j ; k ,  6gijfgkt (2) 

where gij is the three-metric and G~-j;~,z is the so-called supermetric. This is 
the basic equation of quantum cosmology and Hawking's Euclidean quan- 
tum gravity program. An essential feature is the lack of a time derivative; 
time does not exist at this level. An important conceptual problem arises: 
the Wheeler-DeWitt  equation describes the entire universe including the 
observer--we have no Heisenberg cut, between observer and observed. 
Quantum logic is inspired by old-fashioned quantum theory with its 
Heisenberg cut, and it thus becomes necessary to study which alterations 
must be made. 

2. ON QUANTUM LOGIC 

Quantum logic is by now a well-established area of research, with its 
own standardized notions. The reason for giving a short review of it 
anyway is in order to clarify its connection to the Copenhagen interpreta- 
tion and hence the so-called Heisenberg cut, which separates observer and 
observed (to some extent: the observer interacts with what is observed). A 
second and very important reason is the consideration of alternative logics; 
while it is clear that quantum logic must somehow violate some of the 
Boolean axioms, it is not clear which ones. Normally the violated axiom is 
taken to be the law of distributivity, but others could just as well have been 
chosen, and we will make some comments on this. Since we want to study 
quantum gravity, it is also important to consider the connection between 
logic and topology/geometry. This can be done by defining semantics, and 
we will see that various topological/algebraic structures have associated to 
them various kinds of logic. Finally we will make some comments on which 
kinds of logic are equivalent in some way or other, and which is the more 
general. The basic references for this section are Gudder (1979), Varadara- 
jan (1985), and Pitowsky (1989). 

Sometimes Niels Bohr referred to quantum theory as a theory telling 
us what we could get out of observations, more than a theory telling us 
what is "really" going on: the experimental setup was assumed to follow 
classical laws. According to many formulations, the interaction of the 
quantum system with this forced the wave function to collapse into an 
eigenstate of the appropriate operator; how this collapse was to take place 
was beyond the power of quantum theory to describe. This has led a 
number of researchers to search for alternative formulations or even 
alternative theories (hidden variables, many-world interpretation, etc.). 
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And clearly this formulation of quantum theory is inappropriate for a 
study of gravity, where we have to take the entire universe into account, 
and are thus not allowed to make the Heisenbergian distinction between an 
observer governed by the laws of classical physics and an observed object 
governed by the laws of  quantum theory. 

The starting point of quantum logic is an analysis of  the observation 
process. For  an analysis of  this we need a set Q of  allowed physical 
questions. Let us first consider what Q is. Any physical question can be 
written in the form, "does the physical parameter ~ take its value in the 
region A?," i.e., A represents the uncertainty of  the measurement of  ~. 
Hence the elements of  Q must be pairs (~, A). The map m then performs the 
measurement by assigning probabilistic values to the statement ~ cA. This 
gives us a natural partial ordering: 

(41, zXl) -< (42, a2) ~* 41 = 42 ^ al  ~- A2 (3) 

and we have a natural lattice structure as follows: 

(r A~)/~ (~, aa) --=- (r At c~a:) (4) 

(~, A,) v (~, a2) -= (~, A~ ~ZX2) (5) 

Since any physical value has to be a real number, we can, without loss of  
generality, assume A G R. This gives us a complemented lattice with 

(4, A) '  - (4, R/A) (6) 

For technical reasons one requires A to be a Borel set. 
A quantum logic is defined as a lattice with a zero element 0 

(Va: a ~ 0 ~ a = 0) and a unit element 1 (Va: 1 < a ~ a = 1) satisfying: 

1. The lattice must be orthocompleted, i.e., to each element a a unique 
element a '  exists such that a A a '  = 0 and a v a'  = 1. 

2. The lattice must be orthomodular, i.e., a -< b => b = a v (b / \  a'). 
3. The lattice must be a-orthocompIete, i.e., Vae ~2,r a; • aj, i # j  

V a~CJ. 

Here a s b means a < b'. The first condition is not  as innocent as it looks; 
it amounts to demanding, for each a s ~ ,  the existence of  another element 
a' such that a A a ' = 0  and a v a ' =  1. This is essentially a classical 
requirement. We will return to this point later. The second condition is a 
weakening of the distributive law a v (b A c) = (a v b) A (a v c), which we 
do not impose, under the assumption that a a a ' =  1. Hence this require- 
ment is also dubious. The third condition looks like a technical convenience 
but we will comment on its implications later. 

We have now defined what we mean by a universe Q of  physical ques- 
tions; we must make the connection to the measuring process. Consider 
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a question qEQ; an experiment then gives a probability for q to hold, i.e., 
i f q  = (4, A), then we get the probability for ~ A .  Given a poset 5e, a map 
m: 5r ~ [ 0 ,  1] is a probability measure if: 

1. m(l)  = 1. 
2. m ( V  at) = ~ m(ai) i f a i  _k aj, i Cj.  

The first requirement is just the obvious normalization [the question 1 
corresponds to (4, R) and the requirement thus simply states that all 
physical parameters must take their values in the real line]. The second 
allows us to make consecutive measurements of noninterfering variables 
(we will return to this). An event structure is then a pair ( ~ ,  ~gt) where 
is a quantum logic and Jg  is a set of order-determining probability 
measures, i.e., Vm~Jg: re(a) < re(b) ~ a < b. This is equivalent to (Gud- 
der, 1979) the requirements: 

1. Vm~ .A l :m(a )=m(b )  =~ a = b .  
2. If  al, a2 . . . .  E ~  satisfy m(a~) + m(aj) <- 1 for all i r  and all 

m Ed/,  then a b ~Se exists such that 

m(b) + ~ m(a i) = 1 
i 

for all m ~ g .  

The elements of  J / / a r e  known as states. The first requirement is very 
natural: we identify questions which cannot be distinguished by any state. 
The other requirement is somewhat more dubious. It states that given two, 
say, questions al, a2 such that m(aa) + m(az) -< 1 for all states m, i.e., when 
al occurs with certainty in a state m [m(al )=  1], then we know with 
certainty that a2 does not occur [m(a2) = 0]; the requirement is then that a 
third experiment b always exists such that m(al) + m(az) + m(b) = 1 for all 
states. I find this requirement rather strange. It is a consequence of the 
a-orthocompleteness, which can be seen by noting that m(ai) + m(a i)  ~ 1 
for all states m implies m(ai) <- 1 - m(aj) =- m(a S); hence ai _k aj and by 
~r-orthocompleteness c = V a~ exists and by complementarity so does 
b = c'  and we get m(b) + ~.~ m(ai) = m(c" v c) = I. For a finite set of  ai, 
the requirement follows from a '  v a = 1, since this gives 1 = m(a' v a) = 
m(a) + m(a'), as a .1_ a '  always holds. We will have reason to comment 
more on this requirement later. 

The prototype of a quantum logic is the set of orthogonal projections 
of a Hilbert space; actually, a quantum logic is a formalization of this 
structure, which is perhaps unfortunate, as the Hilbert space formulation is 
just a formulation, a derived concept, useful for computational purposes 
well suited to our classically conditioned way of  thinking (a Hilbert space 
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is the more or less straightforward generalization of Euclidean space). A 
discussion of Bell inequalities in the setting of quantum logics can be found 
in Pulmannov/l and Majernik (1992). 

3. A SIMPLE M O D E L  

The last section gave us all the needed formalism, and we will now set 
up a simple toy model. This model will resemble canonical quantum 
gravity, but will be discrete; in fact it will be a pregeometric model. We will 
then consider the underlying logical structure of this, and we will see how 
this differs from ordinary quantum logic. 

As fundamental objects we take points and links between these, and we 
define a set of operators a, a t, b, b* to annihilate and create these objects. 
The universe is thus represented by a graph. Only the spatial part is thus 
represented--this is a kind of discretized version of Wheeler-DeWitt  
quantum gravity. At each time step one of the possible operations is chosen 
at random subject to the following rules: 

1. Between any two points there can be at most one link. 
2. No link can have the same point as its respective ends. 
3. It is forbidden to attempt to annihilate a link or a point when no 

such object exists. 
4. Similarly, it is forbidden to attempt to create a link when all 

possible links exist (i.e., when the graph is complete, a simplex). 
5. When deleting a point, one of those with the lowest degree (i.e., the 

lowest number of links emanating from it) is chosen at random. 

The set of all graphs is denoted by F and is referred to as metaspace, 
to show the similarity with Wheeler's superspace. Note that no restraints 
on the dimensionality of the graphs are imposed; in fact, the dimension is 
allowed to vary, not only from region to region, but also from time to time. 
This model has been proposed and studied in Antonsen (1992, 1994, n.d.) 
and I refer to these for its predictions of such quantities as dimension and 
Euler-Poincar6 characteristic and for its connections with other models in 
the literature. 

Let us at once note that we have a natural partial ordering, namely _ .  
Notice also that we have a natural null element ~ ,  the empty graph, but 
we have no maximal element, since given any graph G, we can always 
construct new graphs which are bigger, e.g., G ~ G or G u H, H any graph. 
Now, for reasons of causality only regions connected to each other can 
possibly communicate, i.e., we cannot "see" a region of space which is not 
connected to  our own. This suggests the introduction of an equivalence 
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relation. Define 

G,,,H ~ 3n: G=Hu{pl,...,p,,}vH=Gu{p,,...,p,} (7) 

where G, H are arbitrary graphs and pl . . . . .  Pn are isolated points and 
where the unions are understood as being disjoint. Thus we have equiva- 
lence classes 

[G] = G w~(N) (8) 

In graph theory there is a natural concept of duality, namely the comple- 
ment of a graph. G" is defined as that graph which has the same set of  
points as G but in which two points are linked if and only if they are not 
linked in G. Hence G n G' is the set of points, and since these are isolated, 
we have 

[G]n [G'] = [~] (9) 

Letting IGI denote the order of a graph, i.e., the number of points in it, and 
letting A n denote the n-simplex, i.e., the graph with n points in which all 
pairs of  points are linked, we have 

[G] u [G'] = [Alol] (I0) 

We see that we have some problems with this, While x ^ x '  = 0 is certainly 
one of  the demands we impose on a (logical) complement, the other, 
x v x '  = 1, is certainly not fulfilled. Also note that x" r x. But what is 
worse, we have not really defined the equivalence class 1. We can make 
another attempt at defining a complement. 

Write F =  F/,,~. Define the relative pseudocomplement (Goldblatt, 
1984; Bell, 1988; Chapman and Rowbotton, 1992; Vickers, 1989) of two 
graphs G, H as 

[G]tnl = max{[K] ePl[G] n[K]  < [H]} (1 t) 

where -< is the partial ordering inherited from F. Defining 

-t [G] = [G]t~ j (12) 

we have the essential property 

7 --i [G] ~ [G] (13) 

so considering -1 as a complement, our algebra is not Boolean. In the next 
section we investigate non-Boolean logics to find out what kind of logics we 
do have, and we will also see how to define a unit 1. 
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4. NONCLASSICAL LOGICS: INTUITIONISM AND MODALITIES 

Classical logic is described by Boolean lattices, i.e., by lattices B which 
are: 

1. Complemented (-7 a is defined for all a). 
2. Distributive [for all a, b, c the law of distributivity, a ^ (b v e) = 

(a A b) v (a /x e), holds]. 

Clearly, we can generalize in three ways: (1) discard the first axiom, (2) 
discard the second, or (3) throw both away. The last just gives us a general 
lattice and is not of  any particular interest; a lattice is too weak a structure 
to yield interesting results. As we say earlier, quantum logic chooses the 
second alternative [in its standard formulation, other versions have been 
proposed (Garden, 1984)]. Here we will now pursue the first. 

A distributive lattice is known as a Brouwerian algebra. Now, a 
complement satisfies per definition a ^ --la = 0 and a v -1 a = 1; the sec- 
ond requirement is also known as "the law of excluded middle" or "tertium 
non datur" [ = a  third (possibility) is not given]; it is essential to classical 
thought. Let us throw away this last requirement, and instead define a 
relative pseudocomplement a~b) as 

a~b) =- sup{x [a A x <- b} (14) 

where -< is the partial ordering of the lattice. The natural interpretation of  
this quantity is the implication a =~ b. Define also the pseudocomplement 
--7 a as a~o); in a Boolean algebra this would become the usual negation. In 
any relative pseudocomplemented lattice L the following hold Va, b, c sL:  

1. (a =~ a ) = l .  
2. If  a -< b, then (a => b) = 1. 
3. b < ( a  ~ b). 
4. ( a / x ( a  =~ b ) ) = a ^ b < b .  
5. (a ~ b) ^ b = b .  
6. (a ~ b ) ^ ( a  =, c ) = ( a  => ( b ^ e ) ) .  
7. (a => b) -< ((a /x c) =:- ( b ^ e ) ) .  
8. I f b - < c ,  t h e n ( a  ~ b ) < ( a  =~ e). 
9. Semitransitivity: (a ~ b ) ^  (b ~ c ) <  (a =:, e). 

10. (a ~ b ) ^ ( b  ~ c ) < ( ( a  v b )  ~ e). 
11. a ~ (b ~ e)-<(a  ~ b) ~ (a ~ e). 

A relative pseudocomplemented lattice with a zero is known as a Heyting 
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algebra after Brouwer's main pupil. One can prove 

-70 = 1 and --71 = 0 (15) 

/f  -7 a = I then a = 0 (16) 

a _ < 7 - 7 a  and - - T a = - 7 7 7 a  (17) 

(a =~ b ) <  ( T b  =~ --Ta) (18) 

a ^ ~ a = 0  but ( - -77(a  v 7 a )  = 1 (19) 

-7(a v b) = 7 a  ^ --Tb (20) 

"-7a v 7 b  < 7 ( a  ^ b) (21) 

7 a  v b <-a =~ b (22) 

--Ta ~ (a ~ b) (23) 

(a =~ b ) ^  (a ~ ~ b ) = - 7 a  (24) 

Notice the weakened version of  the law of  excluded middle above, as well 
as the weakening of  the classical requirement a = 7 --7 a and of  De Morgan's 
law -7 (a v b) = -7 a ^ --7 b. Any relative pseudocomplemented lattice has a 
unit, namely 

1 =- (a =~ a) = a~.) (25 )  

for any a. Also, if Va: ~ - T a  = a ,  then the algebra is Boolean. Note, 
furthermore, the interesting fact that 7 maps the Heyting algebra into a 
Boolean subalgebra: -7 -7 ( 7 a) = ("7 a). 

It should be stressed that in a general Heyting algebra the list of  logical 
connectives ^ ,  v ,  =~, .~,  -7, V, 3 is not  redundant as in the case of  classical 
log ic - -and  quantum logic!--where,  given ^ , - 7 ,  say, we can construct 
v ,  ,~, =~. For  instance, 

(b v c) --- (-7((-7b) ^ (-7c))) 

(b ~ c ) - ( ( - 7 b )  v c )  

(b ~ c)-= ((b ~ c ) ^  (c :~ b) 

Other theorems which hold in classical as well as quantum logic are 

a v T a = l  

a =~ ( a v b )  

a ^ b  ~ a 

~ ' - 7 a  = a 

~ ( a  ^ b) = ( -Ta)  v (--7b) 

((a A b) V (a A C) =~ a A (b v c) 

Only the second and third hold in an arbitrary Heyting algebra. 
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Example I. An example which also elucidates the contents of Heyting 
algebras is the unit interval ! = [0, 1] with the lattice structure given by 

x /x y = min{x, y} 

x v y - max{x, y} 

The relative pseudocomplement is well defined for all pairs x, y and is in fact 

, { ~  x<_y 
(x =*, y) = x(y) = otherwise 

It is easily checked that this is in fact a Heyting algebra. 

Example 2. Consider the category of modules over some ring R. The 
dual of a module M is defined as M* -- Horn(M, R) and in general 
M _ M**. (A similar situation occurs in the theory of Banach spaces, where 
J( ___ X** holds in general and equality only holds for a special class, namely 
the reflexive spaces, e.g., for Hilbert spaces). If we restrict ourselves to 
modules with rank at most n, where n is some fixed number, then we get a 
lattice. M r i M *  is the zero-module. 

Example 3. A topological space (X, v) is also an example of a Heyting 
algebra. Let the pseudocomplement be given by -1A = (X\A) ~ where A o 
denotes the interior of the open set A ~ ;  then --7--hA = A ~ so A c_ --1--hA, 
and the algebra of open sets become a Heyting algebra. The sets A for which 
equality holds are known as regular open sets, so the algebra is Boolean if 
and only if all open sets are regular. 

Example 4. The Logic of Finite Information. Consider a setup consist- 
ing of an apparatus which measures some system. And suppose this 
measurement yields a sequence xn of zeros and ones, i.e., each measurement 
gives a simple "yes," "no"  answer (the actual number of possible values for 
x, is immaterial: 0, 1 is mere convenience). The entire measurement can then 
be represented by a bit stream, and "x ,  = 0" then means that the nth bit 
was read as being zero. Consistency demands that (xn--= O) ^ (x, = 1 ) =  
• where I denotes a false statement (similarly T denotes a true statement, 
T = true, • =false). Demanding that we cannot read a bit before having 
read the one just before it (we cannot jump ahead in "time," i.e., if we have 
a knowledge of the system at "t ime" n, then we must also have some 
knowledge of the system at "t ime" n -  1), we cannot have the law of 
excluded middle (x, = O)v  (x~ = 1 ) =  T since the statement (x, = O)v  
(xn = 1) only means that we have read the nth bit (otherwise the statement 
would be meaningless), but that we do not state the result of the reading. 
This implies 

[(x,,+, = 0 )  v (x,,+ 1 = 1)1 < [(x,, = 0 )  v (x,, = 1)1 (26) 
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One can prove tha t  this actually gives a Heyting algebra [see Vickers 
(1989), from which this example is essentially taken]. This example is 
interesting because a recent article by Doebner and Liicke (1991) shows 
that quantum logic can be formulated as resulting from classical logic by 
imposing some concept of realistic measurement, essentially equivalent to 
finiteness of  the amount of observations which can be made. 

Example 5. Consider a poset P; as is well known, the so-called 
Alexandrov sets, A +(a)= {beP]a ~_ b}, form a topology. These sets also 
form a Heyting algebra, and we thus see a connection between causality (a 
partial order), topology (the corresponding Alexandrov sets), and Heyting 
algebras, which suggests that Heyting algebras are somehow related to 
causality. Further hints of such a relationship will be found later. 

While classical logic, CL, is connected with Boolean algebras, the kind 
of logic related to Heyting algebras is known as Intuitionistic logic, IL. It 
has been proven that, e.g., CL-number theory is contained within IL-num- 
ber theory (K. G6del), and it has been suggested that the entire system of  
CL is contained in a special sector of  1L. Intuitionistic logic is thus very 
general and very powerful (Kleene, 1980; see also Goldblatt, 1984; Dum- 
met, 1977; Troelstra and van Dalen, 1988). 

We get a clue about its interpretation from Example 1 above. The unit 
interval I is a Heyting algebra, and can thus be used in the assigning of 
truth values; this suggests a multivalued logic, and perhaps a connection 
with probability. 

4.1. Formal Languages 

By a (formal) language ~ we mean a set with: 

1. An alphabet d ,  ~ , . . .  of which valid statements are built. 
2. A set of rules specifying how to formulate well-formed sentences; a 

syntax. 
3. A set of such well-formed statements, the axioms. 
4. A set of rules specifying how to construct new well-formed state- 

ments from old ones, the transformation rules. 

The usual transformation rules are: 

1. ~ d  is well formed when d is. 
2. (~r v ~),  ( d  ^ ~) ,  and ( d  =~ ~ )  are well formed whenever d ,  

are. 
3. Va: d ( a )  and 3a: d(a)  are well formed whenever d is a well- 

formed statement with a parameter a. 
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And the axioms of classical logic are of the pattern: 

1. ( d  ~ (g~ :~ d ) ) .  
2. ( ( d  =~ (~  =~ cg)) =~ ( ( d  =,- ~ )  =- ( d  ~ cg)). 
3. (((-7 ~ )  ~ (-~ ~) )  ~ ( ~  ~ ~) ) ) .  

Let us give some examples. 

Example 6. Classical proposition calculus, the Gentzer schemes: 

l a. d =~ (~  =~ d ) .  
lb. ( d  =~ ~ )  ~ ((z~r =~ (~  ~ cg)) =~ ( d  ~ rd)). 
2. i f M ' a n d ( d  => ~ ) , t h e n ~ .  
3. d ~ ( ~  ~ ( d ^ ~ ) ) .  
4a. ( d ^ @ )  ~ d .  
4b. ( d  ^ ~ )  =~ ~ .  
5a. d =~ ( d  v ~).  
5b. ~ =~ ( d  v ~).  
6. ( d  ~ cg) ~ ((@ ~ cg) ~ ( ( d v ~ )  ~ cg)). 
7. ( d  =~ ~ )  =~ ((~r =~ 7 ~ )  =~ 7 d ) .  
8. - - 7 ~ r  =~ d .  

Compare these with the theorems which we know hold for quantum 
logics. 

Example 7. Some theorems from intuitionistic proposition calculus: 

1. ( d  =~ ( ~  =~ cg)) ^ (--1-1 d )  ^ (-7 -1 ~ )  =~ (-7 -1 rg). 
2. ( - 7 - 7 ( ~  => 2 ) )  =~ ( - 7 7 ~  =~ - 7 7 2 ) .  
3. (-1-1 ( d  ~ ~) )  ^ (-7 -1 ( ~  ~ ~)) ~ (-1-1 ( ~  ~ ~)). 
4. 7 - ~ ( ~  ^ ~ )  ,~  7 - 7 ~  ^ - 7 7 ~ .  
5. a /  ~ - 7 ~ s / .  
6. -7-7-7~4 ~=~ ~/. 
7. ~r v --7~ => ( - q - 7 d  r ~r 
8. 7 ( ~  -~  7~r  
9. "-7--7(~r v "-7~). 

Uncertainties can be incorporated into a given language system by 
going to its modal extension; this consists in the introduction of two new 
logical operators E], O, with the interpretation that [ ] ~  is true whenever 

holds in any valuation of the logical system; we call this operator 
necessity. The other, possibility, is defined from the first as 

O ~  ~ - 7 ( � 8 9  (27) 

In such a modal logic, the law of excluded middle no longer holds 
(Goldblatt ,  1984; Bell, 1988; Chapman and Rowbotton,  1992; Vickers, 
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1989; Kleene, 1980; Dummet, 1977; Troelstra and van Dalen, 1988). How 
these new operations affect the old ones has to be specified by extra axioms. 
The most important of these are: 

if [ ] ( d  ~ ~)  then ([Z]d ~ ISIS) (K) 

if D d  then d (T) 

if Z ] d  then D EYd ($4) 

if d then [] �9 (B) 

if O~r then [] �9162 (S5) 

where d ,  ~ are propositions, and where the letters in parentheses are the 
names of  the axioms. The list is in order of decreasing generality. 

Just as we saw that Heyting algebras are related to topologies, 
modality is closely connected to a topological concept, namely closure 
spaces. Given a modality O, we can construct the sets 

x = {xlO(x x )}  (28) 

consisting of  the elements which possibly belong to X (a kind of fuzzy set, 
which we will return to later). One can now prove 

X ~ )? (29) 

x = Y (30) 

X n Y = X n Y  (31) 

X c  Y =:, )~___ ~ (32) 

which are just the McKinsey-Tarski axioms for a closure space. There is 
indeed a 1-1 correspondence between closure spaces and modalities. 

The class of  modalities on a logic forms a lattice in themselves, in 
which the zero element is the modality f ix,  defined by fix(o9) = co, and the 
unit is the modality true: o9 ~ T, where T denotes a true statement. Given 
sentences a, fl, we can construct modalities 

bt~(fl) = a v fl (33) 

/~(fl) = (a ~ D (34) 

= -7  - T a  ( 3 5 )  

One can prove that a theory is classical if and only if, for all modalities/t, 
sentences a, fl exist such t h a t / ~  = l~ a, i.e., provided 3a, flVco: (a =~ o9) = 
(fl v co). To see that this holds when the logic is classical is trivial: just 
choose fl = -7 a; the other way is much more complicated and I refer to the 
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literature (Goldblatt,  1984; Bell, 1988; Chapman and Rowbotton, 1992; 
Vickers, 1989). 

The interpretation of these kinds of logic is the subject of the next 
section. 

4.2. Semantics: Kripke and Beth 

For  Boolean logics we map the lattice of propositions into some 
Boolean lattice in such a way that true statements are mapped into 1 and 
false ones into 0. Such a map is called a valuation and we write 

B k d (36) 

if the proposition d gets mapped by the valuation v into the unit element 
of the Boolean algebra B. If  any valuation v gives v(d)  = 1, then we just 
write B ~ d ,  and finally if this holds for any Boolean algebra whatsoever, 
we write ~ d ,  and d is called a tautology. When working with different 
kinds of logic we sometimes want to specify that d is a tautology when 
using any Boolean algebra, and in this case we write BA ~ d .  

As G6del has proven, we have to distinguish betwe, en provable state- 
ments and true ones, as not all true statements are necessarily provable (the 
famous G6del theorem). Let us be more formal. 

A proof  is a finite sequence of well-formed statements which are 
either (i) axioms or (ii) derived from axioms by the transformation rules 
defined above. If a well-formed statement ~ follows from the sequence 
d j , . . . ,  d ,  then we write 

d l  . . . . .  d ,  ~ ~ (37) 

Note that the axioms can be characterized by ~-d. When we want to 
specify the language we write ~-~ instead of just ~-. Clearly we must demand 
that 

~-~ then ~ (38) 

We say that a theory is sound if the reverse also holds, i.e., if a statement 
is true if and only if it can be proven. The symbol ~- is read "yields" and 

is read "models." 
How are we to generalize these metamathematical notions to modal 

and other nonclassical logics? When the logic is described not by Boolean 
algebras but by some other kind of lattice structure, then the generalization 
is obvious. For  instance, a valuation in a Heyting algebra is a map 
n: 5r ~ / 4 ,  where H is some Heyting algebra; such maps are known as 
H-valuations, and we write H k d if and only if v(d)  = I~H ;  if it holds 
for any H-valuation we simply omit the v-index; and if it holds in any 
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Heyting algebra we write HA ~ d .  It can be proven that 

BA ~ d if and only if ~-CL d (39) 

HA ~ ~ if and only if ~-IL ~r (40) 

where ~'CL means "holds in classical logic" and t-~L similarly "holds in 
intuitionistic logic." So Heyting algebras are to IL what Boolean algebras 
are to CL. And also IL is a generalization of CL. 

For modal logics the case is not yet so clear. The problem was solved 
by Kripke, and is now known as Kripke semantics. By a frame we mean a 
pair F = (IV, R) where W is a set (the set of possible "worlds," the world 
at different "instants," or different stages of "knowledge") and R a relation 
on IV, R c W x W (the "accessibility"). A model is then another pair 
M = (F, v), where F is a frame and where v is a valuation, i.e., a map 
v: 5e ~ W. Statements which does not include any of the two modal 
operators D, O are denoted by small Roman letters, and modal statements 
by lowercase Greek ones. The metamathematical statement M ~w ~b, w e W 
("~b holds at world w in model M")  is then defined by the rules: 

1. M ~wP if and only if wev(p).  
2. M ~, --q~b if and only if M ~wq~ does not hold. 
3. M ~. (~b A if) if and only if M ~w q~ and M ~. ff both hold. 
4. M ~. ff]q~ if and only if 

Vw'eW,  w'Rw: M ~., c~ (41) 

The restrictions on the modal operators are reflected in similar restrictions 
on the accessibility relation R as given by 

(K) and R 

(T) R reflexive 

($4) R reflexive and transitive 

(B) R symmetric 

($5) R an equivalence relation 

To get a complete description, we must add a rule of inference, to 
complement the classical modus ponens (MP) rule: 

this rule is called the rule of necessitation (N) and is 

if ~q~ then ~ Z]~b 

We will now study the physical implications of (i) the Kripke semantics 
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and (ii) the various modal axioms. After that we will return to an 
equivalent formulation called Beth models. 

Let us first look at some possible worlds. A set W very often used in 
computer science is the knowledge at various times, in which case R is the 
simple ordering of times, tRt" r t < t'. Typically the system is a computer 
running some program and the analyst has some incomplete knowledge 
about the result of the program (will it terminate?, etc.); by making various 
tests (e.g., running some small programs) the analyst can then increase his 
information. An application of this is in AI research (artificial intelligence). 
In physics we could take as "worlds" some regions of space-time, and the 
accessibility relation would then tell us which regions can receive informa- 
tion from which other regions, i.e., which regions intersects the past 
light-cone of some observer and which do not. Or, in a somewhat similar 
setting, but more relevant for quantum cosmology, the worlds could be the 
spatial 3-manifold at a given "instant"; R then determines which manifolds 
can evolve into which other manifolds. Many other possibilities exist, but 
we will restrict ourselves to these examples for the present. 

The accecsibility relation R tells which worlds we can access from some 
given world, i.e., a kind of causality. The axioms N and K are unavoidable. 
Reflexivity of R means Vwe W: wRw, that is, a world can always be 
accessed from itself--this is a very reasonable requirement, so we must also 
demand the axiom T. Transitivity, Vwl, W2, W 3 ~ W: (w 1/~w2) A 

(w2Rw3) =~ (w~ R%) ,  is clearly also very reasonable from a physical point 
of view. But here we must stop; we cannot in general require symmetry 
wRw' r w'Rw, as it is well known that in general space-times a region 
may be unaccessible for one observer but this does not imply that the 
region cannot "access" the first one; think, for instance, of space-times with 
boundaries (Hawking and Ellis, 1973). So summa summarum we end up 
with the axiom scheme $4. This is very important, as it has been shown 
that intuitionistic logic is equivalent to a modal extension of CL satisfying the 
axiom scheme $4 (Kleene, 1980). From this we infer the necessity of a 
description in terms of IL and not CL. Again we see that causality is 
closely related to IL, and hence Heyting algebras. 

Let us round off this discussion with some comments on an equivalent 
(and very similar) interpretation of modal logics; the se-called Beth models. 

Let P be a poser, and let p e P ;  by a path through p we mean a subset 
A ~_ P such that: 

1. p e A .  
2. A is linearly ordered, i.e., Vq, reA:  (q ~_r) v (r ~ q). 
3. A cannot be extended to a larger linearly ordered set. 

When we take P to represent the set of all possible states of  knowledge 
a path is complete history of research. The physical relevance for this is 
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obvious. By a bar for p we mean a set B _ P such that all paths through 
p intersect B, i.e., a bar represents some "unavoidable knowledge," some- 
thing we cannot help but being able to deduce, no matter which path of 
research we follow. In symbols, B = {q~P~ k Dq}. Let v be a valuation~ 
then we define a Beth model ~g by: 

1. Jg ~p ~ if and only if a bar B for p exists such that B c v(q~). 
2. J / / ep  (~b v ~O) if and only if there exists a bar B for p such that for 

all q ~ B either Jg  ~p ~b or ~g ~p ~k. 

Notice that especially in this formulation the information-theoretic basis 
of  IL is clear. It is this basis that suggests a use in physics. We will make 
a few comments on this here. Suppose we wanted to make a truly 
fundamental theory, one from which we could derive all the known laws of  
nature. Since these laws include those of  quantum mechanics, we see that 
we have to avoid inconsistencies with quantum theory. The fundamental 
property of  quantum mechanics is the notion of  indeterminism, in the 
strong sense that certain values are indeterminate not as a result of  our lack 
of knowledge, but as a result of  a fundamental characteristic of nature. 
Such indeterminism can be introduced in two ways: (1) via stochasticity or 
(2) via modality. As statistics in the final analysis provides us with a map 
Q ~ I  = [0, 1] of  the physical parameters in question into the unit interval, 
we can reexpress this in terms of modalities, as I is a Heyting algebra. 
Consistency then intervenes again, this time in the guise of  causality: If  
certain statements have indeterminate truth values, how do we prevent 
situations in which one observer has fixed the value as true and the other 
as false? The answer comes from Kripke semantics, or more explicitly, with 
the accessibility relation R. We saw that physical notions of  causality in a 
very abstract sense required this to satisfy the $4 axiom scheme. But then 
we automatically end up with intuitionistic logic. In this sense IL is the 
logical language behind all possible physically fundamental descriptions of 
nature. 

Example. Local Truth. We give an example of  how to introduce 
modalities. Consider a poset (P, --<); we introduce a new partial order p F-q 
which we read as "p is close to q." Define 

/~(p) = {q[p r q} (42) 

If  we have a model M = (P, v) based on P, we can introduce a new 
connective �9 which is interpreted semantically as 

M ~p O~ if and only if /~(p) _ M(~) --- {q[M ~p ~} (43) 
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We then have a modal logic provided: 

�9 The sets #(p) are contained within the corresponding Alexandrov 
sets, #(p) _ A+(p). 

�9 The partial order E_ is dense, i.e., 

Vp, q" p r q  => 3r: p E r E q  

�9 # "antiharmonizes" with ~ in the sense that 

P ~ q  ~ # ( q ) _ # ( p )  

A concrete example could be a topological space in which p close to q 
means q is a limit point of {p }. We could, for instance, define the modality 
in terms of the p-neighborhoods N;:  

M kp Ga  if and only if 3N v" Np c_ M(~) (44) 

where Np denotes a p-neighborhood. This construction works in a larger 
class than just the class of  topological spaces, namely the class of neighbor- 
hood spaces, and even beyond that to arbitrary objects of categorial 
topology. 2 Notice that the Alexandrov sets themselves define a modality if 
the space is "dense," i.e., if for all x, y a z exists such that x ~_ z ~_ y 
whenever x ~_ y. This once again suggests that causality should be treated 
as defining a modality [see in this respect also Woodhouse (1973), Bombelli 
et al. (1987), Bombelli and Meyer (1989), Borchers and Sen (1990), and 
BrightweU and Gregory (1991)], once again hinting at a close relationship 
between causality and IL. 

4.3. Quantum Logic is a Special Case 

This section contains the essential theorem of this paper. We have seen 
that, while the logic underlying our model for quantum gravity was 
nonclassical, it was also not a quantum logic, but we will now show that it 
is in fact an extension of  quantum logics. First of all we must know how 
to translate classical formulas into intuitionistic ones. 'Then we transform 
the basic requirement and show that it holds in a Heyting algebra. 

As mentioned, CL is contained within IL; hence a way to map CL 
statements into IL ones must exist. In fact several exist, but we will only 
define one; further examples can be found in Kleene (1980). A well-formed 
statement is a prime formula when it contains no logical symbols whatso- 
ever, i.e., not v ,  A, =~, <=~, V, 3, D, ~ , - 7 .  Clearly such statements are 

2Categorial topology treats various structures appearing in functional analysis and general 
topology such as topological spaces, neighborhood spaces, uniformities, sirnplicial complices, 
etc., on an equal footing (Preuss, 1988; Kelley, 1975). 
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trivial to transform from CL to IL. Given an arbitrary well-formed 
statement ag, we define its pr ime par t  ag ~ by the following set of  inductive 
rules: 

1. I f  ag is a prime formula, then a g ~  ag. 
2. (ag => ~ ) ~ 1 7 6  =~ &o). 
3. (ag ^ ~ ) o  = (ago ^ ~o). 
4. ( . .qag)o = .n (ago)  = .mago. 

5, (ag v ~)o  = _q(_qago ^ _q~o). 

6. If  x is a variable and ag(x) is a well-formed statement, then 
(Vx ag(x))~ = Vx ag~ 

7. Similarly, (3x ag(x)) ~ = mVx -nag~ 

The requirements 5 and 7 are needed because of  the peculiarities of  IL. It 
has been proven by Gentzer and Bernays that 

if FCLag then [-ZL ag~ (45) 

One very useful way of  thinking of  this transformation rule is as defining 
new logical connectives v o, A ~ . . . .  Intuitionistic theorems are then 
obtained from classical ones by the transformation v - ,  v ~ etc. It is this 
we will use. 

Quantum logics had to satisfy the orthomodularity demand 

a < b  =~ b - - a v ( b ^  T a )  

but this is written in terms of  CL connectives! This can be seen by noting 
that 

(a => b) FCL (b 4=~ (a v (b A "qa)) (46) 

Or by noting that the following hold in any quantum logic: 

F a v "qa 

F a  => a v b  

F - a A b  ~ a 

[- " ' l  - l  a .c:> a 

F- "-q(a A b) . ~  ('-qa) v (--rib) 

(a A b) v (a ^ c) => a A (b v c) 

and from the fact that the set of  logical connectives is redundant; from A 
and --1 we can define a v b as --l((a) A ( 'nb))  and a =~ b by (-1 b) v c. 
These are just the Gentzer schemes for classical logic. Furthermore, in 
intuitionistic logic, the set of  connectives is not redundant. 
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In any relative pseudocomplemented lattice we have a <-- b if and only 
if a ~ b is true. But many  equivalent formulations of  this exist, e.g., 
(a =~ b) is identical to (-7b =~ ~ a ) ,  as we know from elementary (classi- 
cal) mathematics.  Transforming the remainder of  the requirement into IL  
terms, we get 

-~(-~a ^ -~(b ^ -la)) 

We can now prove the following theorem: 

Theorem 1. The following statements are valid: 

if a < b  then a v ( b A - T a ) - < b  

if -7b < ' T a  then m T b  >- -n~a  v ( " 7 ~ b  A T a )  < - l - 7 ( a  v ( b  A Ta))  

for all elements a, b in any Heyting algebra. 

Proof. We have 

a v ( b  A ~ a )  = ( a  v b )  A(a  V -Ta) 

< - - ( avb )  A1 

= a v b  

Now, if a < b, then a v b = b and we get the resuIt. Similarly, from 
-~b -< -7a we get 

'Tb v -7a = --7b 

7 b  A -~a -7a 

SO 

-q(a A b) 2 - l b  v 7 a  = -7b 

7 ( a  v b) -Ta 

and the double negations become 

'-7-7b = 7(--7b v 7 a )  = ~ ' - 7b  A 7 - ~ a  

~ T a =  --a 7 ( a  v b) = -7(--7a A 7 b )  

7 - 7 a  ^ -~-Tb 

hence - 7 - 7  b -> - 7 - 7  a ,  but then - 7 - 7  a v - 7 - 7  b = - 7 - 7  b,  whence we derive 

( - 7 7 a  v 7 a )  A ( - 7 7 a  v -1-1b) = ( - 7 7 a  v -Ta) A ~ b  

< ~ ' -Tb  

which was the desired result. 
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Note that when we impose classical connectives 7 ~ a  = a we get 
7 ( a - <  b) =~ ( T b  < 7 a )  and we obtain the usual orthomodularity de- 
mand. Hence in any Heyting algebra we obtain a generalization of  the 
orthomodulari ty requirement, which, moreover, reduces to the usual one in 
the so-called stable sector of  intuitionistic logic, namely when -7-7a = a. 
Also note that the inequalities only hold when a -< b, as this was used in the 
proof, so contrary to the classical case, we do not have b = a v (b ^ 7 a) 
for all pairs a, b, hence the distributivity appears to have become weakened, 
which, of  course, it has not; the apparent weakening results from the use of  
nonclassical connectives! 

It is perhaps not very surprising that Heyting algebras contain quan- 
tum logics as special cases, as it has been shown (Binder and Pt~k, 1990) 
that any quantum logic can be represented by the collection of  clopen sets 
(i.e., sets which are simultaneously closed and open) in some closure space, 
and we have seen that the open sets themselves form a Heyting algebra. 
Since the collection of  clopen sets forms a subset of  the set of  open sets, the 
result follows. 

4.4. Connection with Quantum Nets 

Recently, Finkelstein has proposed as fundamental structure the con- 
cept of  a quantum net (Finkelstein and Finkelstein, 1983; Finkelstein, 1987, 
1989; Finkelstein and Hallidy, 1991). An essential ingredient in this model 
is the so-called interactive logic, a logic which includes Boolean logic as well 
as projective geometry (and hence quantum logic). The model is based on 
the theory of  automata. States are denoted by S, S', S " , . . . ,  and controls 
C, C', C", . . . .  which are arrows between the states; we write <SICIS'> = 1 
if C is an arrow going from S to S '  and <SICIS') = 0 if C does not connect 
S and S'; in other words, C is the "transition matrix. ''3 Clearly we can 
represent C by its "matrix elements" <SICIS'> as a Boolean matrix, i.e., a 
matrix taking its values in a Boolean algebra. The states S, S', S " , . . .  are 
sets representing the knowledge at a certain stage. The Boolean product 
C �9 C'  of  C, C'  is defined as 

<sl(c . c*)ls'> = V <sIcIs"><s"lcIs'> 
S" 

and we define the space Q of control sequences as 

Q={1 ,  C , C . C , C . C . C , . . . }  

(47) 

(48) 

3Finkelstein uses the notat ion S : C : S '  for < SICIS'), but I have decided to opt for the more 

"physical- looking" formulation. 
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Control sequences can be multiplied in a natural way, by noticing that Q 
can be written Q = 1 v C v C �9 C v . .  �9 where v is the set-theoretic join. 
Write ~ Q ~ Q'  if QQ" ~ 04; we could also write this in a more metamath- 
ematical way as Q ~- ~ Q', i.e., given Q, Q'  is a possible future control 
sequence of  the system. Write Q • Q'  if QQ' = 0 (Finkelstein's o-relation); 
this relation is in general not symmetric. 

Also define the Kleene algebra K as 

K = {f: Q ~ 2} = 2 ~ = ~(Q)  (49) 

where 2 denotes the set {0, 1}. Members of  K are predicates about the 
control sequences, and it is from here we get the interactive predicates. 
Equivalently we could say that K is a class of Q's and that the control 
sequences are elements of  K; this reflects a general structure: the points in 
a space can be considered as "subjects" and the sets as "predicates"; more 
on this later. The Kleene algebra inherits a semigroup structure from Q. 

If  Q belongs to K, then we can ask for the class K'  of all possible 
futures Q' of  Q, i.e., a Beth bar {Q'IQ ~- �9 and we can ask for the class 
K • consisting of  all excluded futures, i.e., 

K• = {Q'IQ ~- ~ ~Q'}  (50) 

(here Finkelstein uses the notation K ~-). Define the relation 

K, ,~K'  iff K •  "• (51) 

We can now get a Heyting algebra structure as follows. We must distin- 
guish between initial and final classes: in Q • Q', Q is initial while Q'  is 
final. Let A denote a class of initial states and X one of final states, such 
that A 2. X holds. Consider subclasses a, x of A, X, respectively, and define 

a • = {X" ~_ X[VA'Ea: A'  _k X'} (52) 

• = {A" c_AIVX'sx: A" • X'} (53) 

This is essentially the same construction as the polar and prepolar of  a 
subspace of  a Banach space (or indeed any module) X: 

A ~ = {feX*tVa cA : f (a)  = 0} 

~ = {a eX[VfeB: f (x)  = 0} 

where A ___ X, B ~ X*. I will return to this point in a moment. The classes 
a • and • are related to the possibility operator as follows: 

a • = {xl-7(a ~- <Sx)} (54) 

• = {al-~(a ~- �9 (55) 

4Finkelstein writes Q' :p :Q,  which could then atso be rendered (QI,31Q') in our notation. 
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i.e., a • contains the impossible futures, while • contains the impossible 
pasts. One easily shows that _1_ reverses inclusion: 

from which it follows that 

a - < b  =~ b •  • (56) 

x < y  ~ • <•  (57) 

l a •  = a  • (58) 

•177 • = • (59) 

These are just the usual Heyting algebra rules. Finkelstein goes on to 
introduce a closure operator 

- a  = • • (60) 

x -  = ( •  • (61) 

This is just the closure belonging to the double negation modality. We then 
get a lattice of initially closed classes, i.e., classes for which - a  = a, by 
defining 

a v b - - - - ( a u b )  (62) 

which is essentially just the Heyting algebra definition for a topological 
space (we work with closed sets so we take closure instead of  interior) One 
can then prove 

a •  • r - a  = - b  (63) 

Similarly we have a lattice of finally closed classes, i.e., classes such that 
x - = x. We can now see that Finkelstein's quantum net formalism fits very 
naturally in with our own ideas. Let us note the fact that Banach spaces 
exhibit similar structures [with pseudocomplement defined by polar or 
prepolar; see, for instance, Rudin (1973)]; this suggests a close relationship 
with algebraic quantum mechanics, where we use not Hilbert spaces, but 
operator algebras of observables (these algebras are also Banach spaces). 
More will be said regarding this point later. As a final comment, let us note 
that the appearance of Heyting algebras does not come so much from the 
modal operator ~ ,  but rather from the relation _1_, hence whenever we have 
a relation like this we should expect intuitionistic logic to be the natural 
language! But such a notion of inaccessible pasts or futures is inherent in 
the concept of causality, hence from causality alone we should expect IL to 
be that natural logical structure. The appropriate definitions would be as 
follows. Denote the future light cone of  a point p by C+(p) and define 

p A_ q iff qr (64) 
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Note that this relation is in general not symmetric. Following in Finkel- 
stein's footsteps, we introduce 

p l  = {q[p _k q} = {qlq$C+(p)} = M\C+(p)  

• = {p~ A_ q} = {plq6C+(p)} 

where M denotes space-time. Hence p l is the set of impossible future 
positions and .Lq is the set of impossible past positions. This notion extends 
to arbitrary regions of M. Define the causal partial order on these regions 
by 

A<_B iff B~_C+(A)= U C+(p) 
pea 

We have 

A ~ = {q[Vp~Q:p .1_ q} 

• = {p[VqEA: p _k q} 

As Finkelstein points out, the fact that _k reverses inclusions is completely 
independent of the relation; similarly, as the triple-A_ identities follow from 
these inequalities, we see that the Heyting nature of _k is quite general and 
hence also holds in our case. 

Finkelstein also writes down an algorithm for obtaining the logical 
language (what he calls interactive logic, but which we have seen is just a 
special case of intuitionistic logic) of an automaton. This is very useful as, 
e.g., 't Hooft (1990) recently proposed a model for quantum gravity based 
on a cellular automaton. The algorithm is of a similar nature to that given 
by Vickers (1989) for obtaining Heyting algebras from "subbasic opera- 
tions" and relations. 

5, TOPOI AND QUANTUM LOGIC 

We will here briefly investigate further the mathematical structure of 
quantum logics. The essential element in the definition of quantum logics is 
the definition of the map m: Q --+ I, where Q is the set of questions and I is 
the unit interval. Now, the set of questions has the form A x ~(A) for 
some set A (usually the set of reals). Given any map f: A x B-+I,  where B 
is any set, we can construct a unique map A x B -+.4 x #(A), denoted by 
1A x f The diagram is 

f 
A x B  , I  

A x #(A) 
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The map f is given by 

f(b) = {a cA If(a, b) = l} (65) 

and is known as the exponential transpose of f .  The general setup is thus. 

A x B  f , ~  

~A •163 / e v ~  

A • ~(A)  

where f~ is some set of truth x, alues, and eva is given, in the example above, 
by eva(a, X ) =  1 if and only if a~X, i.e., eva evaluates the truth of the 
statement a~X, X ~ A, whereas in the theory of sets we take ~ = 2 = {0, 1} 
and the maps A -~ ~2 are just characteristic functions Zn for B's subsets of 
A. Such a structure is very important in modern mathematics, and it is 
related to the concept of a topos (plural: topoi) (Goldblatt, 1984; Bell, 
1988; Chapman and Rowbotton, 1992; Vickers, 1989). A topos is defined 
as a category with the following properties: 

1. It has binary products, i.e., A • B is defined for all objects A, B. 
2. It has a terminal object 1, i.e., for each object A there is a unique 

arrow A ~ 1. 
3. It has what is known as a subobject classifier ~. 
4. It has power objects, i.e., (~(A), evA) is defined for all objects A. 

We will now give the mathematical definition of these terms, and then we 
will see their physical interpretation. 

Since we will only be dealing with objects which are again sets, the 
binary product is just the Cartesian product and is thus well defined for all 
sets A, B. As an example of binary product in another category than that 
of sets, we can consider a poset. This can be turned into a category very 
simply, by drawing an arrow p ~ q if and only i fp  < q. The binary product 
is then simply p ^ q. 

A terminal object in a category of sets is just a singleton set, i.e., a set 
of the form {x}. In a poset it would be a maximal element. 

The concept of a subobject classifier is a bit more complicated. In 
standard set theory ~ = 2 = {0, 1}. It can be used to define subobjects by 
means of a "characteristic function." The set ~ represents the set of truth 
values, and a Subobject is then characterized by an arrow ZB: A ~ fl; ZB (a) 
is true if and only if a~B. A more rigorous definition can be found in 
Gotdblatt (1984), Bell (1988), Chapman and Rowbotton (1992), and 
Vickers (1989). In a category of sets, a subobject is just a subset. 

Power objects are defined as the collection of all subobjects together 
with an evaluation map evA" ~(A) ~ ~; the collection ~(A) is isomorphic 
to flA, which is the generalization of the well-known statements for 
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elementary set theory N(A)---2 a. Let us now consider the physical rele- 
vance of these purely mathematical axioms. Binary products allow us to 
perform consecutive measurements; they are conjunctions. Terminal objects 
are to be interpreted as elements of maximal information, in a sense to be 
made precise later. The subobject classifier is the set of truth values and is 
thus taken to be f~ = I = [0, 1] in general. This leads to a slight problem. 
The class ~(A) then becomes isomorphic to, not the set-theoretic powerset, 
but the functor category f~A. Luckily, a very simple and elegant interpreta- 
tion of this exists. An element of the set I x for some set 2" is known as a 
f u z z y  set. Our conclusion must be: we must  use a topos with f l  = I; the 
subobjects are then f u z z y  sets and the logic is non-Boolean. Note also that I 
is a Heyting algebra. In general, the logic behind a topos is intuitionistic, 
i.e., based on Heyting algebras, and only in special cases is it Boolean. The 
fundamental structure for a logical analysis of quantum mechanics is not 
really an orthomodular lattice, but rather a topos. In any case we end up 
with intuitionistic logic as the true underlying logical system. The use of a 
probability measure m can be reexpressed as the use of fuzzy sets, which 
are just the natural subobjects in this topos. The lack of distributivity in 
quantum logics is more due to our insistence on working with classical 
connectives: in the "projection" of IL unto CL we lose some information, 
which we interpret as a loss of distributivity. The theory of fuzzy sets can 
be found in Sostak (1990) and the references therein. I think that this 
formulation is also very well suited for a discussion of field theory in terms 
of logic; work is in progress on this subject. 

The prime example of a classical logic is the powerset N(A) of some set 
A; this is the most natural class of sets connected with a given set, and one 
could thus argue that Boolean logic is the most general kind of logic, as we 
have seen that we had to consider restricted classes of sets (topologies, etc.) 
in order to get a Heyting algebra. But this is wrong! A topos generalizes the 
notion of a set, and here the "powersets" ~ A  ---~a are Heyting algebras, 
and not in general Boolean. So, if we restrict ourselves to sets, the most 
natural logic is the Boolean one, unless we include some kind of structure 
(the canonical one being a topology), but if we are willing to accept the 
notion of  a generalized set, then we automatically end up with Heyting 
algebras. This is shown in Table I. 

Table I. Hierarchy of Structures and Logics 

f~ Structure Logic 

2 -= {0, 1 } Sets Boolean logic 
I -= [0, 1] Fuzzy sets Fuzzy logic 
Arbitrary Generalized sets Intuitionistic logic 



2010 Antonsen 

6. ON YANG-MILLS FIELDS 

As is well known (Choquet-Bruhat et al., 1982; G6ckeler and 
Schficker, 1989; Warner, 1983), Yang-Mills theory can be formulated in a 
very beautiful geometrical way by the use of fiber bundles. It has also been 
shown that this setting can be generalized to quantum groups, but in this 
case the fibers do not have to be isomorphic (Mfiller, 1992). Finally it 
should be mentioned that ideas along these lines have been proposed in the 
random dynamics project in the guise of the so-called "gauge-glasses," 
which basically consist of a collection of regions in which the fibers are 
isomorphic, but these regions and the structure of the fibers are random, 
and hence one region of space would have an SU(2) bundle structure while 
a neighboring one could have an SU(3) (Nielsen and Brene, n.d.; Froggat 
and Nielsen, 1991). Here I want to argue that the frame proposed in this 
paper can deal with these possibilities in a very natural way. 

The essential concepts are a collection of sets {U~} and a map 
F: U~ ~-~ 0~ such that 

U~ ~ Ua gets mapped into 0a ~ 0~ (66) 

The map 0~--* 0~ will be denoted by F~. We furthermore require that, 
when U~ ~ Ua % U~ is given, then 

F~ = F~o F~ (67) 

this can be reformulated as stating that the diagram 

< 

commutes? The idea is that U= - 0= x ~=, where fr is some Lie group (or 
quantum group), i.e., the space B = 1.)~ U~ looks locally like a trivial bundle 
(a Cartesian product). We have a natural projection zc~ : U, = 0,  • ff~ 
0~, and these projections just make up the map F above. Whenever the 
collection {U~ } consists of points only, U, = {x, }, we have a fiber bundle 
with fiber fix at each point. The set if, is known as the stalk. 

5Categorially speaking, a presheaf is a contravariant functor into a category of  sets. Any poset 
is automatically also a category, so afortiori space-time is a category, with the partial 
ordering given by causality, or with the structure imposed on it by the topology. Considering 
space-time solely as a topological space, we could let M be the corresponding frame of  open 
sets or some similar structure (Vickers, 1989). 



Logics and Quantum Gravity 2011 

The structure we have defined here is known as a presheaf .  The set 
M = U, O, will be taken to be the space-time manifold. We will now see 
how this fits in to the frame defined by our model, i.e., we will show that 
a presheaf is a topos. Consider for each a the set 

f~(O~) = {f: 0~ ~ B} (68) 

The elements of this are known as cosieves on 0~. This is our candidate for 
a subobject classifier. The setup we have now is namely this: let f be a 
function O~ x U# ~ f ~ =  {f~(O~)}; as all the objects are sets, we have a 
unique function f and an evaluation map ev e such that the diagram 

commutes, where 1~ is the identity function on 0~ and where 

~ 0 #  - {0#-valued functions} (69) 

This gives us a topos. Hence we can formulate the relevant mathematical 
structure in terms of topoi, which opens up the possibility of using the very 
powerful methods developed in recent years by mathematicians; in particu- 
lar, we can develop a purely logical formulation. 

Now, the Yang-Mills  field is a connection on a principal bundle, and 
a connection can be defined "semialgebraically" as a family of subspaces 
of the tangent bundle satisfying certain requirements (Choquet-Bruhat 
et al., 1982; G6ckeler and Schiicker, 1989; Warner, 1983). Similarly, the 
field strength tensor is nothing but the curvature of this connection. So 
we must give meaning to a tangent bundle. This can also be done algebrai- 
cally, namely as follows (Warner, 1983). Define an equivalence relation 
on the set of germs of functions on 0~ (this is again a presheaf, by the 
way), as 

f ~ g "r f[o~ = glo~ (70) 

and construct the sets 

and 

= (71 )  

~ = { f  I f  "~ 0} (72) 

It is easily seen that ~ is an ideal in o~=, hence the following constructions 
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are legal 

TO~ = ( f f ~ / i f 2 ) ,  (73) 

T* 0~ = (T0~) * (74) 

where * denotes the dual module N * =  Hom(N, R/Z), where N is some 
module, and R and Z the reals and the integers, respectively. These sets are 
the stalks of what we will term the tangent and cotangent presheaves. Put 

r M  = U (7s) 

T*M = U T*O~ (76) 
C~ 

Elements of these presheaves are known as tangent and cotangent elements, 
respectively. Having defined these, we can go on to define p-forms in the 
usual way using the p-fold tensor products of  T*M. 

Connections can then be defined as families of  subspaces 
{H~} = {H(U~)} of  T0~ satisfying: 

�9 They are the complements of  the spaces V~ defined by V~ = 
{(VM, V~c)IVa4 = 0}, where VM ~TO~ and v~ eTf#~, i.e., Ha @ V~ = TU~. 

�9 They are locally spanned by Ca-vector  fields on B. 
�9 Under the right action of  ~ they transform as 

Hg~ = H(gU,) = TRg(H~) (77) 

where/~g is the right action of the structure group on the bundle. In a local 
trivialization (U~,frx) this is defined by 

(Rgp)~ =- f ~x I (Rggr) = f L' (grg) (78) 

with p~rc-l(x) an element in the fiber, xeUr,  and 

gr --frx(P) 

See G6ckeler and Schficker (1989). 

The vertical spaces V~ are the kernels of  the projections rc~ (or rather 
the projections r2 of the tangent presheaves induced by re). Given such a 
collection of  horizontal spaees H~, a 1-form taking values in f#~ then exists 
such that the horizontal spaces are the kernels of these, i.e., H,  = ker d ~  
with ~'~ : TU~ ~ f#~. Given a derivation d~ on the Grassmann algebra of  
forms, we then form the covariant derivative D~ = d~ + [d~, �9 ]; the curva- 
ture is then the covariant derivative of the connection 1-form, F~ = 
D ~ d .  = d~d~ + [d~, ~'~]. 
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We could then go on to investigate whether the Bianchi identities need 
modification or not, study "holonomy,"  etc. Furthermore, since anomalies 
can be cast in a purely algebraic geometric form, it should be possible to 
translate these into topos language, which would then yield, in the final 
analysis, a purely logical formulation of  anomalies. 

The natural logical concept belonging to these kinds of structures is 
the notion of "local truth," which can be expressed in physical terms as, "it 
has been observed locally t h a t . . . " ;  this actually implies that we are dealing 
with a higher-order logic. To any topos g we have associated a logical 
language, the so-called internal language of the topos. This language is local 
in the sense that only logical operations on statements of the same type are 
allowed. To each set Us corresponds a type U~ in the internal language 
A~ similarly, to f~ corresponds a type fL to "1"~ corresponds true, and 
we define power types ~U~, product types U s x . . .  x U~, and function 
types Us ~ U~. I refer to Bell (1988) for further details. 

The subobject classifier f~ gives the set of possible truth values, and it 
can be proven that f~ is a Heyting algebra in any topos g (see Goldblatt, 
1984, or Bell, 1988). Now, a topos need not refer to any topological space 
at all, but one can prove some interesting results. We say that a topos is 
localic if it is isomorphic to a topos of sheaves over some locale H, i.e., 
is localic provided 8 "-~ Sh(H), where Sh(H) denotes the topos of  sheaves 
over some locale H; note that H need not be a topological space. Similarly 
we say that f~ is spatial if it is complete as a lattice and 

Va, bE92, av~b~c~f~: [(a^b<-<_c ~ a < c v b < - c ) ^ ( a < _ c  ~ b(~c)] 

(79) 

One can then prove (Bell, 1988) that g __-Sh(X), where X is some topolog- 
ical space if and only if g is localic and f~ is spatial. Another important case 
is when the topos is isomorphic to the collection of presheaves over some 
poset. We say that f~ is Alexandrov if it is complete and 

Va, b~O, a ~ b3c6f~: 

^(aAb<c) A(a<c =~ b_%c)l 

(80) 

One can then similarly prove that E - P r e S h ( P ) ,  where PreSh(P) denotes 
the collection of  presheaves over some poset P, if and only if g is localic 
and ~q is Alexandrov. A locale is a concept from pointless topology; 
essentially it consists of  a collection of open sets, i.e., a topology (or more 
generally a frame, which is defined as a complete Heyting algebra), together 
with a collection of maps x: L ~ 2, where L denotes t.he open sets. The 
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elements x are known as the points. A Heyting algebra which is homeo- 
morphic to a locale is then localic. Similarly, the word "spatial" refers to 
the way one usually does topology, in which the points are primitive and 
the opens are defined in terms of these. I refer to Vickers (1989) for further 
details. Locales are closely connected with algebraic geometry (Rosenthal 
and Niefield, 1989). 

6.1. Algebraic Quantum Mechanics and C*-Algebras 

The general idea behind algebraic quantum field theory is to avoid the 
Hilbert space by considering families of operator algebras defined ab- 
stractly. To each region of space-time U is then associated an algebra 
d ( U ) ;  usually the regions are open sets with compact closure and the 
algebras are C*-algebras. The axioms are" 

�9 Isotony: U ~_ V ~ d ( U ) c _  d ( V ) .  
�9 Local commutativity: if U, V are completely spacelike apart, then 

[d(U),  d (V)]  = 0. 
�9 Completeness: d = Uu d ( U )  is completed to a C*-algebra which 

contains all observables. 
�9 Lorentz covariance: the Poincar6 group is represented by automor- 

phisms L: A ~ A r such that d ( U )  L = d ( L U ) .  
�9 Primitivity: d admits a faithful algebraically irreducible representa- 

tion, i.e., a faithful representation such that only the trivial ideals 
{0}, d are invariant. 

The isotony requirement implies that we have to reverse the order 
to get a topos. Define U-> V to mean U c V; then, denoting space-time 
by M, we have a poset category (M, ->) = (M, _c) ~ and we can thus 
formulate the axioms as stating we have a contravariant functor 
d ( "  )-1: (M, ~ )~C*AIg ,  where C*Alg denotes the category of C*-alge- 
bras. Since we are only interested in open sets, we can formulate this a 
presheaf over a locale, O(X), 

Admittedly the definition of -> is somewhat unaesthetic, but is needed 
if we only consider a locale; note, however, that physics provides us with 
one extra, highly important structure, namely causality. This establishes a 
new partial ordering of space-time, and hence of our locale (~(X). Letting 
C+(U) denote the forward cone of a set U, we say 

u _< v iff v~_ c+(u) (81) 

Following Haag and Kastler (1964), we demand 

U _~ V ~ d ( V ) _ c d ( U )  (82) 

The presheaf structure then follows naturally. 
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The elements of d ( U )  are the observables that can be observed in the 
region U, i.e., locally, and all statements are then of a purely local nature. 
The topos structure is then provided by the following sets 

~(U) = {f: U ~ d }  (the set of C*-algebra-valued functions) (83) 

~ U  = f~v (84) 

A different formulation can also be given. The Hamiltonian is, in the final 
analysis, always given by an expression like 

[ ( k a t - k a ~ +  ,-k,.~.k +"  " ") +"  " "] (85) 

where the sums are over all quantum numbers (if these are continuous, we 
of course interpret the sum as an integral). Hence at each point in k-space, 
we have a fiber d k  consisting of a C*-algebra, in such a way that 

[dk ,  d r ]  = 0 if k ~ l (86) 

and when k = l we have some algebraic relations. For instance, if we have 
at each point just an ordinary harmonic oscillator, we would get 

[ak, ak] = tra*k, atlkJ = 0 

[a], ak] = 1 

while if we also have some gauge symmetry, we could write the elements of 
~ k  as ak,a, where 

[ak,., ak,b] = ic~bak,c 

[a~,a, ak,b] = 6,,b 

and similarly we could consider supersymmetric systems, etc. In this way 
we have a natural fiber formulation of  quantum systems, which then gives 
us a natural topos formulation. The Hamiltonian (or the action) should 
then be some kind of "characteristic class" of this bundle structure: 

H ~ J k ~ k d l  + ~klmded/~r +"  " �9 

where the summation over repeated indices is understood and 

Jkl'~k"~r =- 2 (aatkat + flakaf + 7akat + 6a~a*l ) 
kl 

with a, fl, 7, 6 some complex functions of k, l; normally we would set 
a(k, l ) =  - f l ( k ,  l) = �89 and "2 = 6 = 0. This last formulation has the ad- 
vantage of only introducing the truly fundamental quantifies, namely the 
second quantization operators ak, a~ ~ a n y  other quantity can be formed 
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from these. From this we can go on applying the usual fiber bundle 
techniques (see Choquet-Bruhat et al., 1982, or G6ckeler and Schiicker, 
1989); the "gauge transformations" would now be general coordinate 
transformations, but this time in a noncommutative geometry (we can 
consider the operators * ak,  ak as coordinates in this space). 

This research has only just begun and naturally much needs to be 
done; this paper just outlines the mathematical frame in which to work. 

7. CONCLUSION 

We have seen that the study of quantum gravity necessitates a need for 
a more convenient description of the measurement process, differing from 
the usual Copenhagen interpretation. This led us to investigate the founda- 
tions of quantum logics. We showed that this could be considered as a 
special case of what is known as intuitionistic logic, which again can be 
seen as a modal extension of classical logic. Thus we ended up with a 
formulation of quantum mechanics in terms of intuitionistic logic/modal 
logic and we finished by further making explicit the mathematical frame in 
which we have to work. This turned out to be the theory of topoi and of 
fuzzy sets. We then went on to show how Yang-Mills theory, algebraic 
quantum mechanics, and even quantum groups fitted in. Thus we seem to 
have established a common language for all kinds of quantum theory, 
which should be very well suited for handling the problems arising when 
quantizing gravity. This language is closely connected with causality. It 
should be noted that this could only be achieved by abandoning classical 
mathematics as well as classical physics: instead of sets we have topoi, 
which can be seen as generalized sets (categorical set theory, local set 
theory, etc.), implying the use of intuitionistic logic which generalizes 
classical logic. Further research along these lines needs to be done. 
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